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Abstract A phenomenologically motivated small strain
model to simulate the curing of thermosets has been devel-
oped and discussed in a recently published paper (Hossain et
al. in Comput Mech 43(6):769–779, 2009). Inspired by the
concepts used there, this follow-up contribution presents an
extension towards the finite strain regime. The thermodynam-
ically consistent framework proposed here for the simulation
of curing polymers particularly is independent of the choice
of the free energy density, i.e. any phenomenological or mi-
cromechanical approach can be utilised. Both the governing
equations for the curing simulation framework and the nec-
essary details for the numerical implementation within the
finite element method are derived. The curing of polymers
is a very complex process involving a series of chemical
reactions typically resulting in a conversion of low molecu-
lar weight monomer solutions into more or less cross-linked
solid macromolecular structures. A material undergoing such
a transition can be modelled by using an appropriate con-
stitutive relation that is distinguished by prescribed tempo-
ral evolutions of its governing material parameters, which
have to be determined experimentally. Part I of this work
will deal with the elastic framework whereas the following
Part II will focus on viscoelastic behaviour and shrinkage
effects. Some numerical examples demonstrate the capabil-
ity of our approach to correctly reproduce the behaviour of
curing materials.
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1 Introduction and previous work

There is a vast number of applications in almost every branch
of daily life where polymeric materials play an important
role. In cases where the very formation of such materials
plays a decisive role to meet particular design goals of a struc-
ture, e.g. for adhesives in automotive, electronics or aero-
space industry, one can observe an increasing demand for
constitutive models and simulation methods that consider a
time- or degree of cure dependence of the mechanical prop-
erties. Apart from adhesives, further applications relevant for
such models would be carbon- or glass fibre-reinforced epoxy
laminates and (nano-)particle-reinforced polymer structures
in general.

An uncured polymer usually behaves as a deformable vis-
cous liquid practically incapable of sustaining any load other
than hydrostatic. With time evolving, the curing reactions
proceed, polymer chains form (and possibly cross-link to
each other) and the viscosity of the liquid resin, its molecu-
lar weight and the stiffness increase. A number of rheolog-
ical analogies to such processes have been applied and dis-
cussed by several authors [1–4] and also our previous small
strain curing model made extensive use of such assump-
tions. Since some review on available literature and model-
ling approaches concerning the curing of polymers has been
given already in [5], we omit further details on this here and
refer only to the general purpose finite strain curing models
known to us so far.

A physically and chemically sound approach to model
polymer curing has been developed in a series of papers by
Adolf and co-workers [2,6–9], who proposed not only lin-
ear constitutive models but also an extension to the large
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strain regime. Their continuum model, originally devised to
describe viscoelastic glassy polymers, is extended towards
the curing of polymers by the introduction of an additional
dependent variable into the Helmholtz free energy, namely
the completion of reaction. The only limitation of this model
is that it is not formulated in a way suitable to implementa-
tion within the finite element framework, i.e. a full derivation
of stress tensors and consistent tangent operators, which are
essential for the iterative solution of boundary value prob-
lems within finite element schemes, is lacking.

Another approach has recently been published by Lion
and Höfer [1] who proposed a phenomenological thermo-
viscoelastic curing model for finite strain deformations. It
accounts for thermally and chemically induced volume
changes via a ternary multiplicative split of the deforma-
tion gradient into mechanical, thermal and chemical parts.
Similar to Adolf’s ansatz, a coordinate of reaction is intro-
duced that corresponds to the degree of cure. The model is
mainly based on the assumption of process dependent vis-
cosities as in the previous works of Haupt and Lion [10–12].
The resulting constitutive relation is derived in a thermody-
namically consistent manner, i.e. it fulfills the second law of
thermodynamics, which is an important issue that many of
the earlier curing models did not touch. Detailed algorithmic
formulations for the finite element implementation of this
model are elaborated in Retka and Höfer [13]. The energy
density used for the mechanical part of this model is of a phe-
nomenological type. Although the authors claim this model
to be independent concerning the choice of energy density
it seems somehow complicated to derive stresses and tan-
gent operators in case that different constitutive models are
applied.

2 Main concepts and outline

The main assumption, considered earlier [5] in the
development of linear constitutive curing models, is, from
the rheological point of view, that a cross-linking or curing
process can, for the elastic case, be understood as a contin-
uous increase in stiffness. From a molecular point of view
we assumed further that when a step in strain is applied,
the chains between existing cross-links are deformed which
is accompanied by some stress distribution in the material.
Due to the progress in curing, new cross-links occur which
has been conceptualised by the addition of new chains to
the network. These fit into the already deformed structure
and are not affected by the previous deformation, i.e. new
chains do not contribute to the stress until the deformation
is changed again. Expressed in rates this behaviour would
be described by σ̇ = 0 as long as ε̇ = 0. It is notewor-
thy that this particular behaviour prohibits the simulation
of curing materials by just considering an additional time

dependence of the material parameters. If, on the other hand,
(thermo-)viscoelastic formulations governed only by process
dependent viscosities are used as in Lion’s approach [1], this
property is intrinsically captured. Since we would like to
avoid any initial restriction concerning the choice of constitu-
tive model, we depart from our general equation for the stress
update developed in [5] and provide the necessary extensions
to capture finite strain deformations. The resulting simula-
tion framework for elastically curing materials entirely cap-
tures the above mentioned requirements, except for thermally
induced effects which will be treated later. Furthermore, this
approach is valid only for materials that have passed the gel
point, which is only a weak restriction since the stiffness
increase relevant for practical applications takes place mainly
after gelation. In particular, we will omit the consideration of
the initial polymer solution as a multi-component diffusion
mixture.

This paper is organised as follows: Sect. 3 develops the
necessary equations for the three-dimensional finite strain
curing simulation framework by extending the one-dimen-
sional main equation that originated from simple rheological
considerations. In Sect. 4, the simulation framework is par-
ticularised for two different energy density functions, which
are the phenomenological compressible Neo-Hookean mate-
rial and the micro-mechanical 21-chain unit-sphere model.
After the details of the numerical implementations within the
finite element method have been derived, Sect. 5 discusses
the required cure-dependent material parameter evolutions
which is followed by a final Sect. 6 presenting some numer-
ical examples.

3 General simulation framework

The method introduced here aims at the simulation of mate-
rials undergoing finite strain deformations while their elas-
tic properties are simultaneously experiencing a temporal
evolution. As discussed above such a simulation framework
is of particular interest if e.g. curing phenomena typically
appearing in polymer materials have to be considered. As
a starting point we go back to the general equation for the
one-dimensional stress update of our recently published [5]
small strain modelling approach for the curing of thermosets:

σ̇ (t) = c(t)ε̇(t). (1)

Thereby, c(t) denotes the time-dependent material stiffness
linearly relating stress- and strain-rate. For the case of large
strain deformations we transfer this format to

Ṡ(t) = C(t) : Ė(t) = 1
2

C(t) : Ċ(t), (2)

where S, E = 1
2 [C− I] and C denote the 2nd Piola-Kirchhoff

stress tensor, the Green-Lagrange strain tensor and the right
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Cauchy-Green tensor, respectively. By ˙(•) the material time
derivative is expressed and C(t) describes the time dependent
stiffness operator as derived from the strain energy density
# of an arbitrary, time-dependent material model via

C(t) = 4
∂2#(t)

∂C2(t)
. (3)

Stress formulation (2) is of a hypoelastic type, although it dif-
fers from the original version proposed by Truesdell and Noll
[14]. As for any other constitutive assumption, the property
of thermodynamical consistency requires special attention.
This property is given if a free energy density % can be for-
mulated that satisfies the isothermal dissipation inequality

S : Ė − %̇
!≥ 0 (4)

for all possible processes. The standard Coleman-Noll
argumentation then provides the stress formulation (2) if the
following ansatz for % is chosen:

%(t) = 1
2

t∫

0

[
C′(s) : [E(t)− E(s)]

]
: [E(t)− E(s)]ds, (5)

where C′(s) = dC(s)/ds denotes the total differential of the
material specific, time dependent stiffness tensor according
to Eq. (3) and with respect to the integration variable s. In
analogy to a linear spring, this convolution integral can be
interpreted as the accumulation of elastically stored energy
while both the stiffness and the deformation are continuously
evolving. Note that definition (5) is physically reasonable if
and only if the derivative of the stiffness tensor is positive
semi-definite, i.e.

[C′ : E] : E ≥ 0 ∀E, (6)

which is a requirement intrinsically met if C is derived from
an appropriately chosen strain energy density #.

To evaluate the dissipation inequality (4) the material time
derivative %̇ needs to be computed:

%̇ = 1
2

[
[C′(s) : [E(t)− E(s)]] : [E(t)− E(s)]

]
s=t

+1
2

t∫

0

∂

∂t

(
[C′(s) : [E(t)− E(s)]] : [E(t)− E(s)]

)
ds

= 0 + 1
2

t∫

0

[C′(s) : Ė(t)] : [E(t)− E(s)]ds

+1
2

t∫

0

[C′(s) : [E(t)− E(s)]] : Ė(t)ds

=




t∫

0

C′(s) : [E(t) − E(s)]



 : Ė(t)ds. (7)

The last equality sign requires permutability of the double
contractions, i.e.

[C′ : A] : B = [C′ : B] : A ∀A, B

⇔ (C′)i jkl Akl Bi j = (C′)kli j Bi j Akl ,
(8)

which is given since C stems from a potential and thus pos-
sesses major symmetry. Insertion of result (7) into the elastic
version of (4) yields


S(t) −
t∫

0

C′(s) : [E(t) − E(s)]ds



 : Ė(t) != 0 (9)

and the standard Coleman-Noll procedure provides the
following functional for the 2nd Piola-Kirchhoff stress:

S(t) =
t∫

0

C′(s) : [E(t) − E(s)]ds. (10)

Computing the material time derivative finally yields the
desired result, i.e. constitutive equation (2):

Ṡ(t) =
[
C′(s) : [E(t) − E(s)]

]
s=t +

t∫

0

C′(s) : Ė(t)ds

= C(t) : Ė(t) = 1
2

C(t) : Ċ(t). (11)

This tensor-valued ordinary differential equation for the
stress can be solved iteratively by applying numerical inte-
gration schemes like the implicit Euler backward:

Sn+1 = Sn + 1
2

Cn+1 :
[
Cn+1 − Cn

]
, (12)

whereas [•]n = [•](tn) and tn+1 = tn + &t . The main
advantage of this stress formulation is that any kind of consti-
tutive (polymer) model—either phenomenologically or
micromechanically based—can be inserted. The only ingre-
dients required are the temporal evolutions of the governing
material parameters to determine Cn+1, which can be para-
metrised e.g. directly in time or in terms of the degree of
cure. In particular, this ansatz is not restricted to hyperelas-
ticity but can also be used for viscoelastic material mod-
els, as will be discussed in a forthcoming paper. A second
important property of relation (12) is its capability to repro-
duce the physical observation that the stress state of a curing
material is changed if and only if its strain state is modi-
fied, i.e. Ṡ = 0 as long as Ċ = 0. This requirement consti-
tutes a significant design constraint for any model consider-
ing curing processes. It assures that the evolution of material
properties becomes visible just by the time the deformation
state is changed—even though its free energy density evolves
permanently.

In order to apply the finite element method for the solu-
tion of boundary value problems under certain constitutive
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assumptions, it is common practice to resort to implicit iter-
ative schemes like the Newton-Raphson method. In particu-
lar, a consistent linearisation of stress formulation (12) with
respect to changes in strain is required. The computation of
this current tangent operator introduces a sixth-order tensor
A, namely the derivative of the current material specific
stiffness operator with respect to the strain:

En+1 = 2
∂ Sn+1

∂Cn+1 = ∂
(
2Sn + Cn+1 :

[
Cn+1 − Cn])

∂Cn+1

= Cn+1 : Isym +
[
Cn+1 − Cn

]
: ∂Cn+1

∂Cn+1

= Cn+1 +
[
Cn+1 − Cn

]
: An+1 , (13)

where Isym = 1
2 [δikδ jl+δilδ jk] denotes the symmetric fourth

order identity tensor, δi j is the Kronecker delta and An+1 =
∂Cn+1/∂Cn+1. To avoid confusion of time scales, it is worth
pointing out that this derivative provides the change of the
stiffness operator C, being defined by the governing parame-
ters at a fixed time of curing tn+1, with respect to the current
change in strain C .

In the following sections, the framework for the simulation
of curing materials described above will be particularised
for the two cases of a phenomenologically (Neo-Hooke)
and a micromechanically (micro-macro-unit-sphere 21-cha-
in model) motivated polymer model. To this end the under-
lying expressions for free energy density # and stiffness
operator C are recapitulated and the corresponding tangent
operators E are derived.

4 Application to curing of polymers

4.1 Phenomenological example: Neo-Hooke model

We first consider a rather simple but frequently used phe-
nomenological constitutive ansatz for polymers, the so-called
compressible Neo-Hooke model for which the corresponding
free energy density is given by

#(C, J ) = 1
2
κ(ln J )2 − µ ln J + 1

2
µ [I1 − 3] . (14)

Here, I1 = C : I denotes the first invariant of the right
Cauchy-Green tensor while J = detF is the determinant of
the deformation gradient and κ and µ are the Lamé param-
eters. Using Eq. (3) some manipulations provide the corre-
sponding stiffness operator C which is required in Eqs. (12),
and (13):

C = 4
∂2#

∂C2

= κC−1⊗ C−1 + 2 [µ − κ ln J ] C−1' C−1

= κA − 2 [µ − κ ln J ] B. (15)

For a detailed derivation the reader is referred to e.g. [15,16].
The fourth-order tensors A and B are introduced for the sake
of simplicity and can be written component-wise as

(A)i jkl =
(

C−1 ⊗ C−1
)

i jkl
= C−1

i j C−1
kl (16)

(B)i jkl =
(

∂C−1

∂C

)

i jkl

=−1
2

[
C−1

ik C−1
jl + C−1

il C−1
jk

]
. (17)

Thus, the current stiffness operator necessary to update the
stress according to Eq. (12) is determined by the cure-
dependent parameters κ, µ and the strain state included in
J, A, B:

Cn+1 = κn+1A − 2
[
µn+1 − κn+1 ln J

]
B. (18)

The current tangent operator (13) additionally requires the
computation of An+1:

An+1 = ∂Cn+1

∂C

= κn+1
[

∂A
∂C

+ 2 ln J
∂B
∂C

+ B ⊗ C−1
]
−2µn+1 ∂B

∂C

= κn+1
[
B + 2 ln J C + B ⊗ C−1

]
−2µn+1C, (19)

which closes the constitutive equations for a Neo-Hookean
material undergoing a curing process. For the sake of com-
pleteness the sixth-order tensors B = A,C and C = B,C are
given component-wise:

(B)i jklpq =
∂

(
C−1

i j C−1
kl

)

∂C pq
=

∂C−1
i j

∂C pq
C−1

kl + C−1
i j

∂C−1
kl

∂C pq

= −1
2

[
C−1

i p C−1
jq C−1

kl + C−1
iq C−1

j p C−1
kl

+ C−1
i j C−1

kp C−1
lq + C−1

i j C−1
kq C−1

lp

]
, (20)

(C)i jklpq = −1
2

∂
(

C−1
ik C−1

jl + C−1
il C−1

jk

)

∂C pq

= 1
4

[
C−1

i p C−1
kq C−1

jl +C−1
iq C−1

kp C−1
jl +C−1

ik C−1
j p C−1

lq

+ C−1
ik C−1

jq C−1
lp +C−1

i p C−1
lq C−1

jk +C−1
iq C−1

lp C−1
jk

+ C−1
il C−1

j p C−1
kq + C−1

il C−1
jq C−1

kp

]
. (21)

4.2 Micromechanical example: 21-chain model

The utilisation of micromechanically motivated polymer
models in curing simulations has the advantage that the tem-
poral evolutions of the governing parameters reflect the
microstructural changes taking place in the material during
its formation. In particular one frequently encounters param-
eters like number of segments per chain and number of chains

123



Comput Mech (2009) 44:621–630 625

per unit volume which have to evolve in opposite directions
during curing. For example, a small number of long (and
rather soft) chains is successively cross-linked to a network
containing a high number of short (and much stiffer) chains,
as is discussed in more detail in Sect. 5.

From the number of micromechanical models available
in the literature, cf. e.g. [17,18] for introductory overviews,
we will here consider the micro-macro unit-sphere-model
developed by Miehe and co-workers [19] since it has proven
to perform excellently in reproducing the complex behav-
iour of elastomers. More detailed theoretical and mathemat-
ical derivations of the affine 21-chain model can be found in
Lulei [20] and Göktepe [21].

The macroscopic free energy density # of this model is
defined as the weighted discrete average of the microscopic
free energies ϕi of 21 chains, i.e.

# = n
21∑

i=1

wiϕi (λi ), (22)

where the parameter n denotes the number of chains per unit
volume, λi is the stretch of the i th chain and the wi are
weighting factors. The chains are assumed to be oriented
along certain directions t i which are chosen such that a nor-
mal distribution over the unit sphere is assured. The chain
stretches λi are related to the macroscopic strain via

λi (C) =
√

C : [t i ⊗ t i ]. (23)

Concerning the energy ϕi of the chain oriented along t i
the model incorporates non-Gaussian statistics for a random
walk chain consisting of N identical segments as has been
introduced by Kuhn and Grün [22], i.e.

ϕi
(
λr

i

)
=k+N

[

λr
i L

−1(λr
i

)
+ ln

L−1(λr
i

)

sinh L−1
(
λr

i

)
]

, (24)

where λr
i = λi/

√
N denotes the relative chain stretch, k,+

are Boltzmann’s constant and absolute temperature, respec-
tively, and L(•) = coth (•) − 1/(•) is Langevin’s function.
Since the inversion of the latter is not trivial one often sub-
stitutes L−1 by the following Padé approximation:

γi := L−1(λr
i

)
≈ λr

i
3 − (λr

i )
2

1 − (λr
i )

2 . (25)

By defining the shear modulus µ := nk+, adding a volumet-
ric energy term as in the Neo-Hookean case and after some
rearrangements the free energy density of the 21-chain model
finally reads

#(C, J ) =
21∑

i=1

µNwi

[
γiλ

r
i + ln

γi

sinh γi

]

+ 1
2
κ(ln J )2 − µ ln J. (26)

The coefficients wi and the direction vectors t i required in
Eq. (26) go back to the work of Bažant and Oh [23] and are
repeated in the Appendix for the sake of completeness.

As in the previous subsection the curing simulation frame-
work requires the computation of the current stiffness and
tangent operators. Application of Eq. (3) to (26) yields

Cn+1 =
21∑

i=1

wi
4µn+1 N n+1

[
N n+1 − λ2

i

]2 [t i ⊗ t i ⊗ t i ⊗ t i ]

+ κn+1A − 2
[
µn+1 − κn+1 ln J

]
B , (27)

which contains three cure dependent parameters, namely the
network parameter N n+1 denoting the number of segments
per chain as well as the bulk and shear modulus κn+1 and
µn+1, respectively, whereas the latter includes the number of
chains per unit volume nn+1, i.e. a second network param-
eter. For a detailed derivation of the first part of this stiff-
ness operator the interested reader is refered to [20]. Another
partial derivative with respect to C provides the current tan-
gent operator

An+1 = ∂Cn+1

∂C

=
21∑

i=1

wi
8µn+1 N n+1

[
N n+1 − λ2

i

]3 [t i ⊗ t i ⊗ t i ⊗ t i ⊗ t i ⊗ t i ]

+ κn+1
[
B+2 ln JC+B ⊗ C−1

]
−2µn+1C, (28)

with the abbreviations B,B,C as defined in Sect. 4.1.

5 Temporally evolving material parameters

The simulation approach for materials undergoing curing
processes as introduced above is intrinsically dependent on
the availability of the temporal evolutions experienced by
the governing parameters. Usually, such data has to be deter-
mined experimentally in a series of tests with materials in
different stages of curing. From the literature, e.g. [24,25],
it is known that, after the gel point, stiffness parameters like
the shear modulus increase drastically following an expo-
nential saturation function of decreasing slope until the fully
cured state is reached. A simple expression describing such
a behaviour is

µ(t) = µ0 + [µ∞ − µ0] [1 − exp
(
−κµt

)
], (29)

whereas the initial and final values µ0 and µ∞ as well as the
curvature parameter κµ are required. Figure 1 (left) depicts
a corresponding example. As an alternative it is common
practice to use formulations in terms of the degree of cure
α instead of time, which has some advantages if thermal
dependencies are considered. For the sake of simplicity the
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Fig. 1 Evolution of shear
modulus µ(t) (left) with
[µ0, µ∞, κµ] =
[0.01 MPa, 0.5 MPa, 0.25 s−1]
and resulting evolution of the
number of chain segments
(right) with N0 = 1,000

following considerations utilise arbitrarily chosen parame-
ter evolutions of the above type since real material data has
not been available and is not necessary to demonstrate the
properties of our simulation approach.

In case of micromechanically motivated constitutive mod-
els like the 21-chain model, the increase in stiffness accord-
ing to Eq. (29) poses a constraint on the relation between the
network parameters n (number of chains per unit volume)
and N (number of segments per chain). The conservation of
mass requires that the product of chains per unit volume and
segments per chain has to be constant during the whole (iso-
thermal) curing process. Thereby, a constant mass/length of
the segments is assumed, as well as a sufficient size of the unit
volume in a sense that the curing progress does not change
the overall number of segments present in this volume. The
prescribed evolution of the shear modulus therefore leads to
an equation for the current number of segments N (t) since
µ(t) = n(t)k+:

mass conservation: n(t)N (t) = n0 N0 ∀t

⇒ µ0 = n0k+ = n(t)N (t)
N0

k+ = µ(t)
N (t)
N0

⇒ N (t) = µ0 N0

µ(t)
, (30)

i.e. the necessary parameter evolutions for the 21-chain model
can be calculated by prescribing the constants of the exponen-
tial saturation function for the shear modulus (µ0, µ∞, κµ)
together with some initial number of segments per chain
N0. The N (t)-curve for N0 = 1,000 as resulting from the
above µ(t) is plotted in Fig. 1 (right). Similar evolution equa-
tions for the material parameters have been used by Dal and
Kaliske [26] to assure the conservation of mass in modelling
the physical ageing of rubbery polymers.

6 Numerical examples

A number of numerical examples is presented in this sec-
tion to demonstrate that the proposed simulation framework
can reproduce the mechanical behaviour of polymers dur-
ing isothermal curing, which is, in particular, characterised
by a gain in stiffness and a stress rate of zero in case that
the strain rate becomes zero. All simulations have been per-

formed using a research-based in-house finite element code
that has been extended by the constitutive relations and tan-
gent operators summarised in Sects. 4.1 and 4.2. First, some
one-dimensional examples reflect the behaviour of a single
eight-noded brick element for a prescribed uniaxial stretch
history and parameter evolution. Next, some three-dimen-
sional simulations are presented to demonstrate the influ-
ence that different curing rates exert on the material response.
For the sake of simplicity, the bulk modulus evolution has
always been calculated from the current shear modulus via
κ(t) = 2µ(t)[1+ν]

3[1−ν] by assuming a constant Poisson’s ratio
ν = 0.35.

6.1 One-dimensional examples

First, a simple uniaxial tension test is simulated using a sin-
gle finite element to check whether the proposed finite strain
curing models will predict the gain in stiffness during the
advancement of curing and provide a correct behaviour in
case the strain rate becomes zero. To this end a three phase
deformation is applied consisting of a linear increase to λ =
1.05 (macroscopic stretch, not chain stretch) within the first
five seconds which is followed by fourty seconds holding
and another linear increase to λ = 1.1 during the last five
seconds, cf. Fig. 2.

Both the Neo-Hooke and the 21-chain curing model are
used with a prescribed exponential saturation function for

Fig. 2 Load history λ(t) and shear modulus evolution µ(t) according
to Eq. (29) with [µ0, µ∞, κµ] = [0.0001 MPa, 2.5 MPa, 0.0925 s−1],
applied to the Neo-Hooke and 21-chain curing model (N (t) as in
Eq. (30) with N0 = 2 · 106)
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Fig. 3 Elastic curing using the Neo-Hooke (top) and 21-chain (bottom) model, Piola stress vs. time and stretch

the evolution of the shear modulus, also depicted in Fig. 2.
The resulting stress responses versus time and stretch are
given in Fig. 3. The physical observation that the stiffness
increase during curing has no impact on the stress response
of a constant deformation state is correctly reproduced, which
is reflected by the constant lines between 5 and 45 s (left-hand
plots) and, implicitly, by the kinks at λ = 1.05 that stem from
the continuous increase of µ (right-hand side curves). Fur-
thermore, the initially fast growing shear modulus leads to a
nonlinear stress growth during the first five seconds, whereas
the behaviour is almost linear with high stiffness at the end
since the saturation value for µ has been reached meanwhile.

Note that the 21-chain model responds with a slightly
higher maximum stress after 50 s, although the applied defor-
mation seems moderate enough to avoid the dramatic stiff-
ness increase usually induced by the Langevin function at
large strains. This misestimation is clarified if the decrease
of the number of chain segments N from 2×106 at the begin-
ning down to about 80 at the end is considered, i.e. the chains
become short enough to enter the nonlinear range near the
locking stretch, even if the macroscopic stretch is only 10%.

6.2 Three-dimensional examples

To prove the correct behaviour of our curing models for
real three-dimensional structures we first consider a homoge-

neous block having dimensions of 20×7×3 mm3 and being
discretised by 100 eight-noded brick elements as depicted
in Fig. 4a. Boundary conditions and loading are such that a
homogeneous uniaxial tension state is achieved, whereas the
block is stretched up to six hundred percent, cf. Fig. 4b,c.

Four different parameter evolutions are applied to both the
Neo-Hooke and the 21-chain model to clarify the influence
that the rate of the curing process exerts on the mechani-
cal responses. In detail we compare a fully cured, very stiff
material with an uncured, very soft material as well as two
materials with different curing rates, i.e. a large and a small
κµ. The parameters used are ([µ] = MPa , [κµ] = s−1):

Neo-Hooke:

uncured: µ = 0.05

cured: µ = 0.3

slow: [µ0, µ∞, κµ] = [0.05, 0.3, 0.0278]
fast: [µ0, µ∞, κµ] = [0.05, 0.3, 0.0458]

21-chain:

uncured: µ = 0.01 , N = 6000

cured: µ = 0.3 , N = 200

slow: [µ0, µ∞, κµ, N0] = [0.01, 0.3, 0.0278, 6000]
fast: [µ0, µ∞, κµ, N0] = [0.01, 0.3, 0.0458, 6000].
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(a)

(b)

(c)
(d)

(e)

Fig. 4 Three-dimensional block undergoing large deformations. a undeformed geometry, b,c three and six hundred percent of stretch. Stress
responses for uncured, slow and fast curing and fully cured d Neo-Hooke and e 21-chain material

The results are illustrated in Fig. 4d,e. For very large
deformations, the stress-stretch curves of the 21-chain model
correctly reproduce the characteristic S-shape, which is not
observable in the Neo-Hooke case. The differences between
the particular curing regimes are as expected, i.e. higher cur-
ing rates yield much stiffer responses.

Finally, a three-dimensional plate with a hole in its cen-
ter is considered to present an example with inhomogeneous
stress distribution under load. Its dimensions are 60 × 12 ×
2 mm3 and the hole has a diameter of 6 mm. The plate is
discretised by 544 eight-noded hexagonal elements and is
supported as depicted in Figs. 5, and 6a. Force increments
of 0.0093 N (Neo-Hooke model) and 0.00955 N (21-chain
model) are applied at the upper edge nodes to achieve elonga-
tions in x-direction. While being loaded, the specimen under-
goes elastic curing, whereas

[µ0, µ∞, κµ] = [0.001, 0.5, 0.25]

has been chosen for the Neo-Hooke and

[µ0, µ∞, κµ, N0] = [0.001, 0.5, 0.25, 1 · 105]

for the 21-chain elastic curing model. Figures 5, and 6b,c
depict the resulting deformations and Cauchy stresses in x-
direction after five tensile and another five compressive load-
steps. First, tensile stresses and a significant deformation
arise, cf. Figs. 5 and 6b while after the second five loadsteps
of equal magnitude but reverse direction, the plate is stress-

Fig. 5 Inhomogeneous 3d-example, Neo-Hooke elastic curing model,
a: initial configuration, bearing and loading, b: deformation and Cau-
chy stress after five loadsteps &Fx = 0.0093 N, c: stress-free but still
deformed (due to stiffness gain) after five reverse loadsteps &Fx =
−0.0093 N

free but, due to the interim stiffness increase, still deformed,
cf. Figs. 5, and 6c.

7 Conclusion and outlook

This contribution proposes a three-dimensional, thermody-
namically consistent framework for the simulation of poly-
meric materials undergoing curing processes and finite
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Fig. 6 Inhomogeneous 3d-example, 21-chain elastic curing model, a:
initial configuration, bearing and loading, b: deformation and Cauchy
stress after five loadsteps &Fx = 0.00955 N, c: stress-free but still
deformed (due to stiffness gain) after five reverse loadsteps &Fx =
−0.00955 N

deformations. Based on some elementary rheological consid-
erations the general equations for stress update and
tangent operator as required for a finite element implementa-
tion are derived. With this at hand, both phenomenologically
and micromechanically motivated elastic polymer models
are utilised. The numerical examples demonstrate that the
developed approach is suitable to correctly reproduce the
relevant phenomena observable in curing polymers. None-
theless, some restrictions like the assumption of constant
temperature and the purely phenomenological character of
the presented approach should and will be subject of further
investigation. Especially the extension towards viscoelastic-
ity and the consideration of shrinkage effects is going to be
dealt with in Part II of this work.
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Appendix

Coefficients wi and direction vectors t i as required in the
21-chain model Eq. (26).

w1...3 = 0.0530428488186
w4...9 = 0.0398602952624
w10...21 = 0.0501424734974
i t1

i t2
i t3

i
1 1 0 0
2 0 1 0
3 0 0 1

4 0.707106781187 0.707106781187 0
5 0.707106781187 −0.707106781187 0
6 0.707106781187 0 0.707106781187
7 0.707106781187 0 −0.707106781187
8 0 0.707106781187 0.707106781187
9 0 0.707106781187 −0.707106781187
10 0.387907304067 0.387907304067 0.836095596749
11 0.387907304067 0.387907304067 −0.836095596749
12 0.387907304067 −0.387907304067 0.836095596749
13 0.387907304067 −0.387907304067 −0.836095596749
14 0.387907304067 0.836095596749 0.387907304067
15 0.387907304067 0.836095596749 −0.387907304067
16 0.387907304067 −0.836095596749 0.387907304067
17 0.387907304067 −0.836095596749 −0.387907304067
18 0.836095596749 0.387907304067 0.387907304067
19 0.836095596749 0.387907304067 −0.387907304067
20 0.836095596749 −0.387907304067 0.387907304067
21 0.836095596749 −0.387907304067 −0.387907304067
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